Hansen (2005) obtained the efficiency bound (the lowest achievable risk) in the p-dimensional normal location model when p≥3, generalizing an earlier result of Magnus (2002) for the one-dimensional case (p=1). The classes of estimators considered are, however, different in the two cases. We provide an alternative bound to Hansen's which is a more natural generalization of the one-dimensional case, and we compare the classes and the bounds.
Giuseppe De Luca, Jan R. Magnus (2023). Shrinkage efficiency bounds: An extension. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 53(11), 4147-4152 [10.1080/03610926.2023.2173976].
Shrinkage efficiency bounds: An extension
Giuseppe De Luca
Primo
;
2023-01-01
Abstract
Hansen (2005) obtained the efficiency bound (the lowest achievable risk) in the p-dimensional normal location model when p≥3, generalizing an earlier result of Magnus (2002) for the one-dimensional case (p=1). The classes of estimators considered are, however, different in the two cases. We provide an alternative bound to Hansen's which is a more natural generalization of the one-dimensional case, and we compare the classes and the bounds.File | Dimensione | Formato | |
---|---|---|---|
De Luca, Magnus (2023).pdf
Solo gestori archvio
Descrizione: Articolo completo
Tipologia:
Versione Editoriale
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
efficiency-bound.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.