Hansen (2005) obtained the efficiency bound (the lowest achievable risk) in the p-dimensional normal location model when p≥3, generalizing an earlier result of Magnus (2002) for the one-dimensional case (p=1). The classes of estimators considered are, however, different in the two cases. We provide an alternative bound to Hansen's which is a more natural generalization of the one-dimensional case, and we compare the classes and the bounds.

Giuseppe De Luca, Jan R. Magnus (2023). Shrinkage efficiency bounds: An extension. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 53(11), 4147-4152 [10.1080/03610926.2023.2173976].

Shrinkage efficiency bounds: An extension

Giuseppe De Luca
Primo
;
2023-01-01

Abstract

Hansen (2005) obtained the efficiency bound (the lowest achievable risk) in the p-dimensional normal location model when p≥3, generalizing an earlier result of Magnus (2002) for the one-dimensional case (p=1). The classes of estimators considered are, however, different in the two cases. We provide an alternative bound to Hansen's which is a more natural generalization of the one-dimensional case, and we compare the classes and the bounds.
2023
Giuseppe De Luca, Jan R. Magnus (2023). Shrinkage efficiency bounds: An extension. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 53(11), 4147-4152 [10.1080/03610926.2023.2173976].
File in questo prodotto:
File Dimensione Formato  
De Luca, Magnus (2023).pdf

Solo gestori archvio

Descrizione: Articolo completo
Tipologia: Versione Editoriale
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
efficiency-bound.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/584870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact