In this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti-Rabinowitz condition.

Sciammetta A., Tornatore E., Winkert P. (2023). Bounded weak solutions to superlinear Dirichlet double phase problems. ANALYSIS AND MATHEMATICAL PHYSICS, 13(2) [10.1007/s13324-023-00783-0].

Bounded weak solutions to superlinear Dirichlet double phase problems

Sciammetta A.;Tornatore E.;
2023-01-01

Abstract

In this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti-Rabinowitz condition.
2023
Sciammetta A., Tornatore E., Winkert P. (2023). Bounded weak solutions to superlinear Dirichlet double phase problems. ANALYSIS AND MATHEMATICAL PHYSICS, 13(2) [10.1007/s13324-023-00783-0].
File in questo prodotto:
File Dimensione Formato  
Double Phase Problem via critical point theory.pdf

Solo gestori archvio

Tipologia: Post-print
Dimensione 308.25 kB
Formato Adobe PDF
308.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sciammetta Tornatore WInker 2023.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 347.52 kB
Formato Adobe PDF
347.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/583071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact