With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.
Augugliaro, L., Wit, E.C., Pazira, H., González, J., Abegaz, F., Mineo, A. (2023). Using Differential Geometry for Sparse High-Dimensional Risk Regression Models. In Models for Data Analysis (pp. 9-23). Brentari, E., Chiodi, M., Wit, EJ.C. [10.1007/978-3-031-15885-8_2].
Using Differential Geometry for Sparse High-Dimensional Risk Regression Models
Augugliaro, Luigi
;Mineo, Angelo
2023-01-01
Abstract
With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.File | Dimensione | Formato | |
---|---|---|---|
AugugliaroEtAl_MDA_23.pdf
Solo gestori archvio
Descrizione: Contributo completo
Tipologia:
Post-print
Dimensione
410.99 kB
Formato
Adobe PDF
|
410.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.