In recent years, there has been a rapid growth in the knowledge of cell-secreted extracellular vesicle functions. They are membrane enclosed and loaded with proteins, nucleic acids, lipids, and other biomolecules. After being released into the extracellular environment, some of these vesicles are delivered to recipient cells; consequently, the target cell may undergo physiological or pathological changes. Thus, extracellular vesicles as biological nano-carriers, have a pivotal role in facilitating long-distance intercellular communication. Understanding the mechanisms that mediate this communication process is important not only for basic science but also in medicine. Indeed, extracellular vesicles are currently seen with immense interest in nanomedicine and precision medicine for their potential use in diagnostic, prognostic, and therapeutic applications. This paper aims to summarize the latest advances in the study of the smallest subtype among extracellular vesicles, the exosomes. The article is divided into several sections, focusing on exosomes’ nature, characteristics, and commonly used strategies and methodologies for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a quick outline of advances in exosomes’ extensive nanomedical applications. Moreover, considerations that require further investigations before translating them to clinical applications are summarized.
DI BELLA MA (2022). Overview and Update on Extracellular Vesicles: Considerations on Exosomes and their Application in Modern Medicine [10.3390/biology11060804].
Overview and Update on Extracellular Vesicles: Considerations on Exosomes and their Application in Modern Medicine
DI BELLA MA
Primo
2022-06-01
Abstract
In recent years, there has been a rapid growth in the knowledge of cell-secreted extracellular vesicle functions. They are membrane enclosed and loaded with proteins, nucleic acids, lipids, and other biomolecules. After being released into the extracellular environment, some of these vesicles are delivered to recipient cells; consequently, the target cell may undergo physiological or pathological changes. Thus, extracellular vesicles as biological nano-carriers, have a pivotal role in facilitating long-distance intercellular communication. Understanding the mechanisms that mediate this communication process is important not only for basic science but also in medicine. Indeed, extracellular vesicles are currently seen with immense interest in nanomedicine and precision medicine for their potential use in diagnostic, prognostic, and therapeutic applications. This paper aims to summarize the latest advances in the study of the smallest subtype among extracellular vesicles, the exosomes. The article is divided into several sections, focusing on exosomes’ nature, characteristics, and commonly used strategies and methodologies for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a quick outline of advances in exosomes’ extensive nanomedical applications. Moreover, considerations that require further investigations before translating them to clinical applications are summarized.File | Dimensione | Formato | |
---|---|---|---|
Di Bella Biology 2022.pdf
accesso aperto
Descrizione: review
Tipologia:
Versione Editoriale
Dimensione
3.94 MB
Formato
Adobe PDF
|
3.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.