Solar energy is one of the most widely exploited renewable/sustainable resources for electricity generation, with photovoltaic and concentrating solar power technologies at the forefront of research. This study focuses on the development of a neural network prediction model aimed at assessing the energy producibility of dish–Stirling systems, testing the methodology and offering a useful tool to support the design and sizing phases of the system at different installation sites. Employing the open-source platform TensorFlow, two different classes of feedforward neural networks were developed and validated (multilayer perceptron and radial basis function). The absolute novelty of this approach is the use of real data for the training phase and not predictions coming from another analytical/numerical model. Several neural networks were investigated by varying the level of depth, the number of neurons, and the computing resources involved for two different sets of input variables. The best of all the tested neural networks resulted in a coefficient of determination of 0.98 by comparing the predicted electrical output power values with those measured experimentally. The results confirmed the high reliability of the neural models, and the use of only open-source IT tools guarantees maximum transparency and replicability of the models.

Lo Brano, V., Guarino, S., Buscemi, A., Bonomolo, M. (2022). Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach. ENERGIES, 15(24) [10.3390/en15249298].

Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach

Lo Brano, Valerio
;
Guarino, Stefania;Buscemi, Alessandro;Bonomolo, Marina
2022-01-01

Abstract

Solar energy is one of the most widely exploited renewable/sustainable resources for electricity generation, with photovoltaic and concentrating solar power technologies at the forefront of research. This study focuses on the development of a neural network prediction model aimed at assessing the energy producibility of dish–Stirling systems, testing the methodology and offering a useful tool to support the design and sizing phases of the system at different installation sites. Employing the open-source platform TensorFlow, two different classes of feedforward neural networks were developed and validated (multilayer perceptron and radial basis function). The absolute novelty of this approach is the use of real data for the training phase and not predictions coming from another analytical/numerical model. Several neural networks were investigated by varying the level of depth, the number of neurons, and the computing resources involved for two different sets of input variables. The best of all the tested neural networks resulted in a coefficient of determination of 0.98 by comparing the predicted electrical output power values with those measured experimentally. The results confirmed the high reliability of the neural models, and the use of only open-source IT tools guarantees maximum transparency and replicability of the models.
Settore ING-IND/11 - Fisica Tecnica Ambientale
https://www.mdpi.com/1996-1073/15/24/9298
Lo Brano, V., Guarino, S., Buscemi, A., Bonomolo, M. (2022). Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach. ENERGIES, 15(24) [10.3390/en15249298].
File in questo prodotto:
File Dimensione Formato  
energies-15-09298-compresso.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/576010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact