We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action-angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.

Di Ruzza S., Lhotka C. (2011). High order normal form construction near the elliptic orbit of the Sitnikov problem. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 111(4), 449-464 [10.1007/s10569-011-9380-0].

High order normal form construction near the elliptic orbit of the Sitnikov problem

Di Ruzza S.
;
2011-09-01

Abstract

We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action-angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.
Settore MAT/07 - Fisica Matematica
https://link.springer.com/article/10.1007/s10569-011-9380-0
Di Ruzza S., Lhotka C. (2011). High order normal form construction near the elliptic orbit of the Sitnikov problem. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 111(4), 449-464 [10.1007/s10569-011-9380-0].
File in questo prodotto:
File Dimensione Formato  
05DL2011.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 437.15 kB
Formato Adobe PDF
437.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/574188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact