In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad && \text{in } \Omega,\\ u & = \text{constant} &&\text{on } \partial\Omega,\\ 0&=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&& \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out that this spectrum has a first nontrivial curve $\mathcal{C}$ being Lipschitz continuous, decreasing and with a certain asymptotic behavior. Since $(\lambda_2,\lambda_2)$ lies on this curve $\mathcal{C}$, with $\lambda_2$ being the second eigenvalue of the corresponding no-flux eigenvalue problem for the $p$-Laplacian, we get a variational characterization of $\lambda_2$. This paper extends corresponding works for Dirichlet, Neumann, Steklov and Robin problems.

Giuseppina D'Aguì, Angela Sciammetta, Patrick Winkert (2023). On the Fučík spectrum of the p-Laplacian with no-flux boundary condition. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 69, 1-17 [10.1016/j.nonrwa.2022.103736].

On the Fučík spectrum of the p-Laplacian with no-flux boundary condition

Angela Sciammetta;
2023-01-01

Abstract

In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad && \text{in } \Omega,\\ u & = \text{constant} &&\text{on } \partial\Omega,\\ 0&=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&& \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out that this spectrum has a first nontrivial curve $\mathcal{C}$ being Lipschitz continuous, decreasing and with a certain asymptotic behavior. Since $(\lambda_2,\lambda_2)$ lies on this curve $\mathcal{C}$, with $\lambda_2$ being the second eigenvalue of the corresponding no-flux eigenvalue problem for the $p$-Laplacian, we get a variational characterization of $\lambda_2$. This paper extends corresponding works for Dirichlet, Neumann, Steklov and Robin problems.
2023
Giuseppina D'Aguì, Angela Sciammetta, Patrick Winkert (2023). On the Fučík spectrum of the p-Laplacian with no-flux boundary condition. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 69, 1-17 [10.1016/j.nonrwa.2022.103736].
File in questo prodotto:
File Dimensione Formato  
On the Fucick spectrum 2023.pdf

Solo gestori archvio

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 782.79 kB
Formato Adobe PDF
782.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/574187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact