Using purely variational methods, we prove local and global higher integrability results for upper gradients of quasiminimizers of a (p,q) -Dirichlet integral with fixed boundary data, assuming it belongs to a slightly better Newtonian space. We also obtain a stability property with respect to the varying exponents p and q. The setting is a doubling metric measure space supporting a Poincaré inequality.
Nastasi A., Pacchiano Camacho C. (2023). Higher integrability and stability of (p,q)-quasiminimizers. JOURNAL OF DIFFERENTIAL EQUATIONS, 342, 121-149 [10.1016/j.jde.2022.09.031].
Higher integrability and stability of (p,q)-quasiminimizers
Nastasi A.
;
2023-01-01
Abstract
Using purely variational methods, we prove local and global higher integrability results for upper gradients of quasiminimizers of a (p,q) -Dirichlet integral with fixed boundary data, assuming it belongs to a slightly better Newtonian space. We also obtain a stability property with respect to the varying exponents p and q. The setting is a doubling metric measure space supporting a Poincaré inequality.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Higher integrability and stability JDE.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
402.19 kB
Formato
Adobe PDF
|
402.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2203.07699.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
304.73 kB
Formato
Adobe PDF
|
304.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.