The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of nine improved covariance estimation procedures using daily returns of 90 highly capitalized US stocks for the period 1997–2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between the estimation period T and the number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than that obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover, many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary, when short selling is not allowed and T4N, the considered methods are unable to outperform the sample covariance in terms of realized risk, but can give much more diversified portfolios than that obtained with the sample covariance. When T5N, the use of the sample covariance matrix and of the pseudo-inverse gives portfolios with very poor performance.

Pantaleo, E., Tumminello, M., Lillo, F., Mantegna, R.N. (2011). When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators. QUANTITATIVE FINANCE, 11(7), 1067-1080.

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

TUMMINELLO, Michele;MANTEGNA, Rosario Nunzio
2011-01-01

Abstract

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of nine improved covariance estimation procedures using daily returns of 90 highly capitalized US stocks for the period 1997–2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between the estimation period T and the number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than that obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover, many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary, when short selling is not allowed and T4N, the considered methods are unable to outperform the sample covariance in terms of realized risk, but can give much more diversified portfolios than that obtained with the sample covariance. When T5N, the use of the sample covariance matrix and of the pseudo-inverse gives portfolios with very poor performance.
Pantaleo, E., Tumminello, M., Lillo, F., Mantegna, R.N. (2011). When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators. QUANTITATIVE FINANCE, 11(7), 1067-1080.
File in questo prodotto:
File Dimensione Formato  
QFPantaleo-2011.pdf

accesso aperto

Dimensione 591.17 kB
Formato Adobe PDF
591.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/57095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 30
social impact