In this paper we present a method to automatically segment a photo sequence in groups containing the same persons. Many methods in literature accom- plish to this task by adopting clustering techniques. We model the problem as the search for probable associations between faces detected in subsequent photos con- sidering the mutual exclusivity constraint: a person can not be in a photo two times, nor two faces in the same photo can be assigned to the same group. Associations have been found considering face and clothing descriptions. In particular, a two level architecture has been adopted: at the first level, associations are computed within meaningful temporal windows (situations); at the second level, the resulting clusters are re-processed to find associations across situations. Experiments confirm our technique generally outperforms clustering methods. We present an analysis of the results on a public dataset, enabling future comparison, and on private collections.
Lo Presti, L., Morana, M., La Cascia, M. (2011). A data association approach to detect and organize people in personal photo collections. MULTIMEDIA TOOLS AND APPLICATIONS, 51 [10.1007/s11042-011-0839-5].
A data association approach to detect and organize people in personal photo collections
LO PRESTI, Liliana;MORANA, Marco;LA CASCIA, Marco
2011-01-01
Abstract
In this paper we present a method to automatically segment a photo sequence in groups containing the same persons. Many methods in literature accom- plish to this task by adopting clustering techniques. We model the problem as the search for probable associations between faces detected in subsequent photos con- sidering the mutual exclusivity constraint: a person can not be in a photo two times, nor two faces in the same photo can be assigned to the same group. Associations have been found considering face and clothing descriptions. In particular, a two level architecture has been adopted: at the first level, associations are computed within meaningful temporal windows (situations); at the second level, the resulting clusters are re-processed to find associations across situations. Experiments confirm our technique generally outperforms clustering methods. We present an analysis of the results on a public dataset, enabling future comparison, and on private collections.File | Dimensione | Formato | |
---|---|---|---|
2011 MTAP.pdf
Solo gestori archvio
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.