In this paper, using the Chambers isoperimetric inequality, we introduce the notion of weighted rearrangement of a function associated to the measure $f dx$, where $f(x)=e^{g(|x|)}$ for $x \in \mathbb{R}^n}$, with $g$ smooth, convex and even. Then we give some of its applications to variational inequalities and PDEs via weighted symmetrization.
Barbara Brandolini, Francesco Chiacchio (2023). Some applications of the Chambers isoperimetric inequality. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 16(6), 1242-1263 [10.3934/dcdss.2022163].
Some applications of the Chambers isoperimetric inequality
Barbara Brandolini
;
2023-06-01
Abstract
In this paper, using the Chambers isoperimetric inequality, we introduce the notion of weighted rearrangement of a function associated to the measure $f dx$, where $f(x)=e^{g(|x|)}$ for $x \in \mathbb{R}^n}$, with $g$ smooth, convex and even. Then we give some of its applications to variational inequalities and PDEs via weighted symmetrization.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
brandolini.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
380.76 kB
Formato
Adobe PDF
|
380.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.