Hypertension is a major cardiovascular risk factor that is responsible for a heavy burden of morbidity and mortality worldwide. A critical aspect of cardiovascular risk estimation in hypertensive patients depends on the assessment of hypertension-mediated organ damage (HMOD), namely the generalized structural and functional changes in major organs induced by persistently elevated blood pressure values. The vasculature of the eye shares several common structural, functional, and embryological features with that of the heart, brain, and kidney. Since retinal microcirculation offers the unique advantage of being directly accessible to non-invasive and relatively simple investigation tools, there has been considerable interest in the development and modernization of techniques that allow the assessment of the retinal vessels' structural and functional features in health and disease. With the advent of artificial intelligence and the application of sophisticated physics technologies to human sciences, consistent steps forward have been made in the study of the ocular fundus as a privileged site for diagnostic and prognostic assessment of diverse disease conditions. In this narrative review, we will recapitulate the main ocular imaging techniques that are currently relevant from a clinical and/or research standpoint, with reference to their pathophysiological basis and their possible diagnostic and prognostic relevance. A possible non pharmacological approach to prevent the onset and progression of retinopathy in the presence of hypertension and related cardiovascular risk factors and diseases will also be discussed.
Del Pinto, R., Mule', G., Vadala', M., Carollo, C., Cottone, S., Agabiti Rosei, C., et al. (2022). Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies [10.3390/nu14112200].
Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies
Mule', GiuseppeCo-primo
Writing – Original Draft Preparation
;Vadala', MariaSecondo
Conceptualization
;Carollo, CaterinaMembro del Collaboration Group
;Cottone, SantinaMembro del Collaboration Group
;
2022-05-25
Abstract
Hypertension is a major cardiovascular risk factor that is responsible for a heavy burden of morbidity and mortality worldwide. A critical aspect of cardiovascular risk estimation in hypertensive patients depends on the assessment of hypertension-mediated organ damage (HMOD), namely the generalized structural and functional changes in major organs induced by persistently elevated blood pressure values. The vasculature of the eye shares several common structural, functional, and embryological features with that of the heart, brain, and kidney. Since retinal microcirculation offers the unique advantage of being directly accessible to non-invasive and relatively simple investigation tools, there has been considerable interest in the development and modernization of techniques that allow the assessment of the retinal vessels' structural and functional features in health and disease. With the advent of artificial intelligence and the application of sophisticated physics technologies to human sciences, consistent steps forward have been made in the study of the ocular fundus as a privileged site for diagnostic and prognostic assessment of diverse disease conditions. In this narrative review, we will recapitulate the main ocular imaging techniques that are currently relevant from a clinical and/or research standpoint, with reference to their pathophysiological basis and their possible diagnostic and prognostic relevance. A possible non pharmacological approach to prevent the onset and progression of retinopathy in the presence of hypertension and related cardiovascular risk factors and diseases will also be discussed.File | Dimensione | Formato | |
---|---|---|---|
nutrients-14-02200-v2.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.