The control systems applied on active magnetic bearing are several. A perfect levitation is characterized by maintaining the operating point condition that is characterized by the center of stator coincident with the geometric center of shaft. The first controller implemented for this purpose is PID controller that is characterized by an algorithm that leads the amplifier to produce control current until the operating point condition is not reached, this is obtained by an integration operator. The effect of an integrator is essential but not necessary for a centered levitation for example in the robust control characterized by a dynamic model depended on plant of system so that it depends on angular speed as LQR controller does. In LQR there is not integrator so there is not a perfectly centered section of shaft with center of stator. On contrary PID controller does not depend on angular speed and it can be easily implemented according some simple rules. Predictive control is another interesting controller characterized by a multiple controller operating in different condition in order to get the minimum of cost function, but also in this case the angular speed is introduce for the same reason discussed before.

Barbaraci, G., Virzì Mariotti, G. (2011). Performances Comparison for a Rotating Shaft Suspended by 4-Axis Radial ActiveMagnetic Bearings via μ-Synthesis, Loop-Shaping Design, and Sub(H)∞with Uncertainties. MODELLING AND SIMULATION IN ENGINEERING, 2011(volume 2011), 1-10 [10.1155/2011/414286].

Performances Comparison for a Rotating Shaft Suspended by 4-Axis Radial ActiveMagnetic Bearings via μ-Synthesis, Loop-Shaping Design, and Sub(H)∞with Uncertainties

BARBARACI, Gabriele;VIRZI' MARIOTTI, Gabriele
2011-01-01

Abstract

The control systems applied on active magnetic bearing are several. A perfect levitation is characterized by maintaining the operating point condition that is characterized by the center of stator coincident with the geometric center of shaft. The first controller implemented for this purpose is PID controller that is characterized by an algorithm that leads the amplifier to produce control current until the operating point condition is not reached, this is obtained by an integration operator. The effect of an integrator is essential but not necessary for a centered levitation for example in the robust control characterized by a dynamic model depended on plant of system so that it depends on angular speed as LQR controller does. In LQR there is not integrator so there is not a perfectly centered section of shaft with center of stator. On contrary PID controller does not depend on angular speed and it can be easily implemented according some simple rules. Predictive control is another interesting controller characterized by a multiple controller operating in different condition in order to get the minimum of cost function, but also in this case the angular speed is introduce for the same reason discussed before.
Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchine
http://www.hindawi.com/journals/mse/contents/
Barbaraci, G., Virzì Mariotti, G. (2011). Performances Comparison for a Rotating Shaft Suspended by 4-Axis Radial ActiveMagnetic Bearings via μ-Synthesis, Loop-Shaping Design, and Sub(H)∞with Uncertainties. MODELLING AND SIMULATION IN ENGINEERING, 2011(volume 2011), 1-10 [10.1155/2011/414286].
File in questo prodotto:
File Dimensione Formato  
MSE 414286.pdf

accesso aperto

Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/56515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact