In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.

Amato, G., Cavaleri, L. (2010). Dynamical identification of building structures: new strategies. MECCANICA DEI MATERIALI E DELLE STRUTTURE, I, 1-10.

Dynamical identification of building structures: new strategies

AMATO, Giuseppina;CAVALERI, Liborio
2010-01-01

Abstract

In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Settore ICAR/09 - Tecnica Delle Costruzioni
Amato, G., Cavaleri, L. (2010). Dynamical identification of building structures: new strategies. MECCANICA DEI MATERIALI E DELLE STRUTTURE, I, 1-10.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/56366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact