The progressively more demanding needs of emissions and costs reduction in the transportation industry are pushing engineers towards the use of increasingly lightweight structures. This goal can be achieved only if dissimilar and/or new materials, including polymers and composites, are joined together to create complex structures. Conventional fusion welding processes have often been proven inadequate to this task because of the high heat input reducing the joint mechanical properties or even making the joining process impossible. Joining by forming technologies take advantage on the plastic deformation to create sound joints out of even very dissimilar materials. Over the last 25 years, several new processes, with increasing potential in effectively joining virtually every structural material, have been invented and developed. In the paper, a comprehensive overview of the most utilized joining by forming processes is given. For each process, an analysis of the current research trends and hot topics is provided, highlighting strengths and weaknesses for industrial applications.
Buffa G., Fratini L., La Commare U., Romisch D., Wiesenmayer S., Wituschek S., et al. (2022). Joining by forming technologies: current solutions and future trends. INTERNATIONAL JOURNAL OF MATERIAL FORMING, 15 [10.1007/s12289-022-01674-8].
Joining by forming technologies: current solutions and future trends
Buffa G.
;Fratini L.;La Commare U.;Merklein M.
2022-05-01
Abstract
The progressively more demanding needs of emissions and costs reduction in the transportation industry are pushing engineers towards the use of increasingly lightweight structures. This goal can be achieved only if dissimilar and/or new materials, including polymers and composites, are joined together to create complex structures. Conventional fusion welding processes have often been proven inadequate to this task because of the high heat input reducing the joint mechanical properties or even making the joining process impossible. Joining by forming technologies take advantage on the plastic deformation to create sound joints out of even very dissimilar materials. Over the last 25 years, several new processes, with increasing potential in effectively joining virtually every structural material, have been invented and developed. In the paper, a comprehensive overview of the most utilized joining by forming processes is given. For each process, an analysis of the current research trends and hot topics is provided, highlighting strengths and weaknesses for industrial applications.File | Dimensione | Formato | |
---|---|---|---|
s12289-022-01674-8.pdf
accesso aperto
Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/
Tipologia:
Versione Editoriale
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.