We consider inference for linear regression models estimated by weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We propose a new simulation method that yields re-centered confidence and prediction intervals by exploiting the bias-corrected posterior mean as a frequentist estimator of a normal location parameter. We investigate the performance of WALS and several alternative estimators in an extensive set of Monte Carlo experiments that allow for increasing complexity of the model space and heteroskedastic, skewed, and thick-tailed regression errors. In addition to WALS, we include unrestricted and fully restricted least squares, two post-selection estimators based on classical information criteria, a penalization estimator, and Mallows and jackknife model averaging estimators. We show that, compared to the other approaches, WALS performs well in terms of the mean squared error of point estimates, and also in terms of coverage errors and lengths of confidence and prediction intervals.

De Luca Giuseppe, Magnus Jan R, Peracchi Franco (2023). Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals. COMPUTATIONAL ECONOMICS, 61, 1637-1664 [10.1007/s10614-022-10255-5].

Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals

De Luca Giuseppe
Primo
Membro del Collaboration Group
;
2023-04-01

Abstract

We consider inference for linear regression models estimated by weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We propose a new simulation method that yields re-centered confidence and prediction intervals by exploiting the bias-corrected posterior mean as a frequentist estimator of a normal location parameter. We investigate the performance of WALS and several alternative estimators in an extensive set of Monte Carlo experiments that allow for increasing complexity of the model space and heteroskedastic, skewed, and thick-tailed regression errors. In addition to WALS, we include unrestricted and fully restricted least squares, two post-selection estimators based on classical information criteria, a penalization estimator, and Mallows and jackknife model averaging estimators. We show that, compared to the other approaches, WALS performs well in terms of the mean squared error of point estimates, and also in terms of coverage errors and lengths of confidence and prediction intervals.
apr-2023
De Luca Giuseppe, Magnus Jan R, Peracchi Franco (2023). Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals. COMPUTATIONAL ECONOMICS, 61, 1637-1664 [10.1007/s10614-022-10255-5].
File in questo prodotto:
File Dimensione Formato  
s10614-022-10255-5.pdf

accesso aperto

Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia: Versione Editoriale
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/550219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact