There are many theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). MATHUSLA (MAssive Timing Hodoscope for Ultra Stable neutraL pArticles) is a proposal for a minimally instrumented, large-volume surface detector to detect such LLPs. The MATHUSLA surface detector will consist of an air-filled decay volume surrounded by charged particles detectors (top, bottom, and sides) that provide timing and a robust multilayer tracking system located in the upper region. The collaboration proposes covering a total sensitive area of (200 × 200) square meters on the surface in the region near the interaction point of ATLAS or CMS detectors for the beginning of the HL-LHC run.
Marsella G. (2018). Ultra-long-lived particles searches with MATHUSLA. NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, 936, 507-508 [10.1016/j.nima.2018.09.069].
Ultra-long-lived particles searches with MATHUSLA
Marsella G.
2018-09-15
Abstract
There are many theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). MATHUSLA (MAssive Timing Hodoscope for Ultra Stable neutraL pArticles) is a proposal for a minimally instrumented, large-volume surface detector to detect such LLPs. The MATHUSLA surface detector will consist of an air-filled decay volume surrounded by charged particles detectors (top, bottom, and sides) that provide timing and a robust multilayer tracking system located in the upper region. The collaboration proposes covering a total sensitive area of (200 × 200) square meters on the surface in the region near the interaction point of ATLAS or CMS detectors for the beginning of the HL-LHC run.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0168900218312130-main.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
422.97 kB
Formato
Adobe PDF
|
422.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.