We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.
Dalla Riva M., Musolino P. (2018). Moderately close Neumann inclusions for the Poisson equation. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 41(3), 986-993 [10.1002/mma.4028].
Moderately close Neumann inclusions for the Poisson equation
Dalla Riva M.;
2018-01-01
Abstract
We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.File | Dimensione | Formato | |
---|---|---|---|
mma.4028.pdf
Solo gestori archvio
Descrizione: ahead of print
Tipologia:
Versione Editoriale
Dimensione
243.46 kB
Formato
Adobe PDF
|
243.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Math Methods in App Sciences - 2016 - Riva - Moderately close Neumann inclusions for the Poisson equation.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
209.04 kB
Formato
Adobe PDF
|
209.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.