We consider the Laplace equation in a domain of Rn, n≥3, with a small inclusion of size ϵ. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.

Dalla Riva M., Molinarolo R., Musolino P. (2020). Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem. NONLINEAR ANALYSIS, 191 [10.1016/j.na.2019.111645].

Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem

Dalla Riva M.;
2020-02-01

Abstract

We consider the Laplace equation in a domain of Rn, n≥3, with a small inclusion of size ϵ. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.
feb-2020
Dalla Riva M., Molinarolo R., Musolino P. (2020). Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem. NONLINEAR ANALYSIS, 191 [10.1016/j.na.2019.111645].
File in questo prodotto:
File Dimensione Formato  
j.na.2019.111645.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 915.02 kB
Formato Adobe PDF
915.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2211.12818.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 414.89 kB
Formato Adobe PDF
414.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/546246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact