We consider the Laplace equation in a domain of Rn, n≥3, with a small inclusion of size ϵ. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.
Dalla Riva M., Molinarolo R., Musolino P. (2020). Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem. NONLINEAR ANALYSIS, 191 [10.1016/j.na.2019.111645].
Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem
Dalla Riva M.;
2020-02-01
Abstract
We consider the Laplace equation in a domain of Rn, n≥3, with a small inclusion of size ϵ. On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
j.na.2019.111645.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
915.02 kB
Formato
Adobe PDF
|
915.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2211.12818.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
414.89 kB
Formato
Adobe PDF
|
414.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.