In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter ϕ.

Dalla Riva M., Molinarolo R., Musolino P. (2022). Existence results for a nonlinear nonautonomous transmission problem via domain perturbation. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 152(6), 1451-1476 [10.1017/prm.2021.60].

Existence results for a nonlinear nonautonomous transmission problem via domain perturbation

Dalla Riva M.;
2022-01-01

Abstract

In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter ϕ.
2022
Settore MATH-03/A - Analisi matematica
Dalla Riva M., Molinarolo R., Musolino P. (2022). Existence results for a nonlinear nonautonomous transmission problem via domain perturbation. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 152(6), 1451-1476 [10.1017/prm.2021.60].
File in questo prodotto:
File Dimensione Formato  
existence-results-for-a-nonlinear-nonautonomous-transmission-problem-via-domain-perturbation.pdf

accesso aperto

Descrizione: This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/)
Tipologia: Versione Editoriale
Dimensione 565.53 kB
Formato Adobe PDF
565.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/546030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact