We present a novel theoretical approach to simulate spin, time, and angular-resolved photoelectron spectroscopy (ARPES) from first-principles that is applicable to surfaces, thin films, few layer systems, and low-dimensional nanostructures. The method is based on a general formulation in the framework of time-dependent density functional theory (TDDFT) to describe the real time-evolution of electrons escaping from a surface under the effect of any external (arbitrary) laser field. By extending the so-called t-SURFF method to periodic systems one can calculate the final photoelectron spectrum by collecting the flux of the ionization current trough an analyzing surface. The resulting approach, that we named t-SURFFP, allows us to describe a wide range of irradiation conditions without any assumption on the dynamics of the ionization process allowing for pump-probe simulations on an equal footing. To illustrate the wide scope of applicability of the method we present applications to graphene, monolayer, and bilayer WSe2, and hexagonal BN (hBN) under different laser configurations.

De Giovannini U., Hubener H., Rubio A. (2017). A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 13(1), 265-273 [10.1021/acs.jctc.6b00897].

A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems

De Giovannini U.
;
2017-01-01

Abstract

We present a novel theoretical approach to simulate spin, time, and angular-resolved photoelectron spectroscopy (ARPES) from first-principles that is applicable to surfaces, thin films, few layer systems, and low-dimensional nanostructures. The method is based on a general formulation in the framework of time-dependent density functional theory (TDDFT) to describe the real time-evolution of electrons escaping from a surface under the effect of any external (arbitrary) laser field. By extending the so-called t-SURFF method to periodic systems one can calculate the final photoelectron spectrum by collecting the flux of the ionization current trough an analyzing surface. The resulting approach, that we named t-SURFFP, allows us to describe a wide range of irradiation conditions without any assumption on the dynamics of the ionization process allowing for pump-probe simulations on an equal footing. To illustrate the wide scope of applicability of the method we present applications to graphene, monolayer, and bilayer WSe2, and hexagonal BN (hBN) under different laser configurations.
2017
Settore FIS/03 - Fisica Della Materia
De Giovannini U., Hubener H., Rubio A. (2017). A first-principles time-dependent density functional theory framework for spin and time-resolved angular-resolved photoelectron spectroscopy in periodic systems. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 13(1), 265-273 [10.1021/acs.jctc.6b00897].
File in questo prodotto:
File Dimensione Formato  
Giovannini-Journal of Chemical Theory and Computation-2017.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/542938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact