First-principles methods for time-resolved angular resolved photoelectron spectroscopy play a pivotal role in providing interpretation and microscopic understanding of the complex experimental data and in exploring novel observables or observation conditions that may be achieved in future experiments. Here we describe an efficient, reliable and scalable first-principles method for tr-ARPES based on time-dependent density functional theory including propagation and surface effects usually discarded in the widely used many-body techniques based on computing the non-equilibrium spectral function and discuss its application to a variety of pump–probe conditions. We identify four conditions, depending on the length of the probe relative to the excitation in the materials on the one hand and on the overlap between pump and probe on the other hand. Within this paradigm different examples of observables of time-resolved ARPES are discussed in view of the newly developed and highly accurate time-resolved experimental spectroscopies.

De Giovannini U., Sato S.A., Hubener H., Rubio A. (2022). First-principles modelling for time-resolved ARPES under different pump–probe conditions. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 254, 147152 [10.1016/j.elspec.2021.147152].

First-principles modelling for time-resolved ARPES under different pump–probe conditions

De Giovannini U.;
2022-01-17

Abstract

First-principles methods for time-resolved angular resolved photoelectron spectroscopy play a pivotal role in providing interpretation and microscopic understanding of the complex experimental data and in exploring novel observables or observation conditions that may be achieved in future experiments. Here we describe an efficient, reliable and scalable first-principles method for tr-ARPES based on time-dependent density functional theory including propagation and surface effects usually discarded in the widely used many-body techniques based on computing the non-equilibrium spectral function and discuss its application to a variety of pump–probe conditions. We identify four conditions, depending on the length of the probe relative to the excitation in the materials on the one hand and on the overlap between pump and probe on the other hand. Within this paradigm different examples of observables of time-resolved ARPES are discussed in view of the newly developed and highly accurate time-resolved experimental spectroscopies.
17-gen-2022
Settore FIS/03 - Fisica Della Materia
De Giovannini U., Sato S.A., Hubener H., Rubio A. (2022). First-principles modelling for time-resolved ARPES under different pump–probe conditions. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 254, 147152 [10.1016/j.elspec.2021.147152].
File in questo prodotto:
File Dimensione Formato  
vol. 254 2022 Journal of electron spectroscopy and related phenomena.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 11.19 MB
Formato Adobe PDF
11.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2112.13039.pdf

accesso aperto

Descrizione: articolo
Tipologia: Pre-print
Dimensione 6.79 MB
Formato Adobe PDF
6.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/542936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact