Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 Msun yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is not visible in the X-ray band because of the absorption by the stellar atmosphere. We also suggest that a non-negligible optical depth of X-ray emission lines produced by post-shock accreting plasma may explain the almost constant mass-accretion rates derived in X-rays if the effect is larger in stars with higher optical mass-accretion rates.

Curran, R.L., Argiroffi, C., Sacco, G.G., Orlando, S., Peres, G., Reale, F., et al. (2011). Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. ASTRONOMY & ASTROPHYSICS, 526(A104) [10.1051/0004-6361/20101552].

Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs

ARGIROFFI, Costanza;PERES, Giovanni;REALE, Fabio;
2011-01-01

Abstract

Context. High resolution X-ray spectroscopy has revealed soft X-rays from high density plasma in classical T Tauri stars (CTTSs), probably arising from the accretion shock region. However, the mass accretion rates derived from the X-ray observations are consistently lower than those derived from UV/optical/NIR studies. Aims: We aim to test the hypothesis that the high density soft X-ray emission originates from accretion by analysing, in a homogeneous manner, optical accretion indicators for an X-ray selected sample of CTTSs. Methods: We analyse optical spectra of the X-ray selected sample of CTTSs and calculate the accretion rates based on measuring the Hα, Hβ, Hγ, He ii 4686 Å, He i 5016 Å, He i 5876 Å, O i 6300 Å, and He i 6678 Å equivalent widths. In addition, we also calculate the accretion rates based on the full width at 10% maximum of the Hα line. The different optical tracers of accretion are compared and discussed. The derived accretion rates are then compared to the accretion rates derived from the X-ray spectroscopy. Results: We find that, for each CTTS in our sample, the different optical tracers predict mass-accretion rates that agree within the errors, albeit with a spread of ≈ 1 order of magnitude. Typically, mass-accretion rates derived from Hα and He i 5876 Å are larger than those derived from Hβ, Hγ, and O i. In addition, the Hα full width at 10%, whilst a good indicator of accretion, may not accurately measure the mass-accretion rate. When the optical mass-accretion rates are compared to the X-ray derived mass-accretion rates, we find that: a) the latter are always lower (but by varying amounts); b) the latter range within a factor of ≈ 2 around 2 × 10-10 Msun yr-1, despite the former spanning a range of ≈ 3 orders of magnitude. We suggest that the systematic underestimate of the X-ray derived mass-accretion rates could depend on the density distribution inside the accretion streams, where the densest part of the stream is not visible in the X-ray band because of the absorption by the stellar atmosphere. We also suggest that a non-negligible optical depth of X-ray emission lines produced by post-shock accreting plasma may explain the almost constant mass-accretion rates derived in X-rays if the effect is larger in stars with higher optical mass-accretion rates.
Settore FIS/05 - Astronomia E Astrofisica
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201015522&Itemid=129
Curran, R.L., Argiroffi, C., Sacco, G.G., Orlando, S., Peres, G., Reale, F., et al. (2011). Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. ASTRONOMY & ASTROPHYSICS, 526(A104) [10.1051/0004-6361/20101552].
File in questo prodotto:
File Dimensione Formato  
curranargiroffi2011.pdf

Solo gestori archvio

Dimensione 284.6 kB
Formato Adobe PDF
284.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/54193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 45
social impact