In this chapter, we first use the different patterns of participation to define three subsamples of primary interest for the analysis of the SHARE data collected in Wave 8: CAPI, CATI and CAPI & CATI. We then describe the procedure used to construct calibrated cross-sectional and longitudinal weights for handling, respectively, problems of unit non-response and attrition in the CAPI subsample. Afterwards, we describe the model used to obtain multiple imputations of the missing values due to item non-response in the CAPI data.
De Luca Giuseppe, Li Donni Paolo, Rashidi Moslem (2022). Weights and Imputations in SHARE Wave 8. In SHARE WAVE 8 METHODOLOGY: Collecting Cross-National Survey Data in Times of COVID-19 (pp. 133-145). Munich : Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy (MPISOC).
Weights and Imputations in SHARE Wave 8
De Luca Giuseppe
Membro del Collaboration Group
;Li Donni PaoloMembro del Collaboration Group
;Rashidi MoslemMembro del Collaboration Group
2022-01-01
Abstract
In this chapter, we first use the different patterns of participation to define three subsamples of primary interest for the analysis of the SHARE data collected in Wave 8: CAPI, CATI and CAPI & CATI. We then describe the procedure used to construct calibrated cross-sectional and longitudinal weights for handling, respectively, problems of unit non-response and attrition in the CAPI subsample. Afterwards, we describe the model used to obtain multiple imputations of the missing values due to item non-response in the CAPI data.File | Dimensione | Formato | |
---|---|---|---|
SHARE_Wave8_Methodology.pdf
Solo gestori archvio
Descrizione: Volume metodologico SHARE wave 8
Tipologia:
Versione Editoriale
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.