Photocatalytic chemical transformations in the presence of irradiated TiO2 are generally considered in terms of interfacial electron transfer. However, more elusive energy-transfer-driven reactions have been also hypothesized to occur, mainly on the basis of the indirect evidence of detected reaction products whose existence could not be justified simply by electron transfer. Unlike in homogeneous and colloidal systems, where energy transfer mechanisms have been investigated deeply for several organic syntheses, understanding of similar processes in heterogeneous systems is at only a nascent level. However, this gap of knowledge can be filled by considering the important achievements of synthetic heterogeneous photocatalysis, which bring the field closer to industrial exploitation. The present manuscript summarizes the main findings of previous literature reports and, also on the basis of some novel experimental evidences, tentatively proposes that the energy transfer in TiO2 photocatalysis could possess a Förster-like nature.
Parrino F., D'Arienzo M., Mostoni S., Dire S., Ceccato R., Bellardita M., et al. (2022). Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis [10.1007/s41061-021-00358-2].
Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis
Bellardita M.;Palmisano L.
2022-01-01
Abstract
Photocatalytic chemical transformations in the presence of irradiated TiO2 are generally considered in terms of interfacial electron transfer. However, more elusive energy-transfer-driven reactions have been also hypothesized to occur, mainly on the basis of the indirect evidence of detected reaction products whose existence could not be justified simply by electron transfer. Unlike in homogeneous and colloidal systems, where energy transfer mechanisms have been investigated deeply for several organic syntheses, understanding of similar processes in heterogeneous systems is at only a nascent level. However, this gap of knowledge can be filled by considering the important achievements of synthetic heterogeneous photocatalysis, which bring the field closer to industrial exploitation. The present manuscript summarizes the main findings of previous literature reports and, also on the basis of some novel experimental evidences, tentatively proposes that the energy transfer in TiO2 photocatalysis could possess a Förster-like nature.File | Dimensione | Formato | |
---|---|---|---|
Energy transfer.pdf
Open Access dal 18/11/2022
Tipologia:
Post-print
Dimensione
387.88 kB
Formato
Adobe PDF
|
387.88 kB | Adobe PDF | Visualizza/Apri |
Parrino2021_Article_ElectronAndEnergyTransferMecha.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.