Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.
Favacchio G., Hofscheier J., Keiper G., Van Tuyl A. (2021). Splittings of toric ideals. JOURNAL OF ALGEBRA, 574, 409-433 [10.1016/j.jalgebra.2021.01.012].
Splittings of toric ideals
Favacchio G.;
2021-01-01
Abstract
Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.File | Dimensione | Formato | |
---|---|---|---|
Splittings_of_Toric_Ideals- postprint draft.pdf
Solo gestori archvio
Tipologia:
Post-print
Dimensione
400.39 kB
Formato
Adobe PDF
|
400.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Splittings of toric ideals.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
545.76 kB
Formato
Adobe PDF
|
545.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1909.12820_FAVACCHIO2.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
468.6 kB
Formato
Adobe PDF
|
468.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.