Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.

Favacchio G., Hofscheier J., Keiper G., Van Tuyl A. (2021). Splittings of toric ideals. JOURNAL OF ALGEBRA, 574, 409-433 [10.1016/j.jalgebra.2021.01.012].

Splittings of toric ideals

Favacchio G.;
2021-01-01

Abstract

Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.
2021
Favacchio G., Hofscheier J., Keiper G., Van Tuyl A. (2021). Splittings of toric ideals. JOURNAL OF ALGEBRA, 574, 409-433 [10.1016/j.jalgebra.2021.01.012].
File in questo prodotto:
File Dimensione Formato  
Splittings_of_Toric_Ideals- postprint draft.pdf

Solo gestori archvio

Tipologia: Post-print
Dimensione 400.39 kB
Formato Adobe PDF
400.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Splittings of toric ideals.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 545.76 kB
Formato Adobe PDF
545.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1909.12820_FAVACCHIO2.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 468.6 kB
Formato Adobe PDF
468.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/534043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact