We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially (ℙ1)n. A combinatorial characterization, the (⋆)-property, is known in ℙ1× ℙ1. We propose a combinatorial property, (⋆s) with 2 ≤ s ≤ n, that directly generalizes the (⋆)-property to (ℙ1)nfor larger n. We show that X is ACM if and only if it satisfies the (⋆n)-property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.
Favacchio G., Guardo E., Migliore J. (2018). On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(7), 2811-2825 [10.1090/proc/13981].
On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces
Favacchio G.;
2018-01-01
Abstract
We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially (ℙ1)n. A combinatorial characterization, the (⋆)-property, is known in ℙ1× ℙ1. We propose a combinatorial property, (⋆s) with 2 ≤ s ≤ n, that directly generalizes the (⋆)-property to (ℙ1)nfor larger n. We show that X is ACM if and only if it satisfies the (⋆n)-property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.File | Dimensione | Formato | |
---|---|---|---|
FGM-postprint draft.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Post-print
Dimensione
355.66 kB
Formato
Adobe PDF
|
355.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
S0002-9939-2018-13981-7.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
246.01 kB
Formato
Adobe PDF
|
246.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.