We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially (ℙ1)n. A combinatorial characterization, the (⋆)-property, is known in ℙ1× ℙ1. We propose a combinatorial property, (⋆s) with 2 ≤ s ≤ n, that directly generalizes the (⋆)-property to (ℙ1)nfor larger n. We show that X is ACM if and only if it satisfies the (⋆n)-property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.

Favacchio G., Guardo E., Migliore J. (2018). On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(7), 2811-2825 [10.1090/proc/13981].

On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces

Favacchio G.;
2018-01-01

Abstract

We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially (ℙ1)n. A combinatorial characterization, the (⋆)-property, is known in ℙ1× ℙ1. We propose a combinatorial property, (⋆s) with 2 ≤ s ≤ n, that directly generalizes the (⋆)-property to (ℙ1)nfor larger n. We show that X is ACM if and only if it satisfies the (⋆n)-property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.
2018
Favacchio G., Guardo E., Migliore J. (2018). On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(7), 2811-2825 [10.1090/proc/13981].
File in questo prodotto:
File Dimensione Formato  
FGM-postprint draft.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Post-print
Dimensione 355.66 kB
Formato Adobe PDF
355.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
S0002-9939-2018-13981-7.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 246.01 kB
Formato Adobe PDF
246.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/534040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact