In this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for P 1 × P 1 and, more recently, in (P 1 ) r . In P 1 × P 1 the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in P m × P n . In such an ambient space it is equivalent to the so-called (∗)-property. Moreover, we start an investigation of the ACM property in P 1 × P n . We give a new construction that highlights how different the behavior of the ACM property is in this setting.

Favacchio G., Migliore J. (2019). Multiprojective spaces and the arithmetically Cohen-Macaulay property. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 166(3), 583-597 [10.1017/S0305004118000142].

Multiprojective spaces and the arithmetically Cohen-Macaulay property

Favacchio G.;
2019-05-01

Abstract

In this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for P 1 × P 1 and, more recently, in (P 1 ) r . In P 1 × P 1 the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in P m × P n . In such an ambient space it is equivalent to the so-called (∗)-property. Moreover, we start an investigation of the ACM property in P 1 × P n . We give a new construction that highlights how different the behavior of the ACM property is in this setting.
mag-2019
Favacchio G., Migliore J. (2019). Multiprojective spaces and the arithmetically Cohen-Macaulay property. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 166(3), 583-597 [10.1017/S0305004118000142].
File in questo prodotto:
File Dimensione Formato  
FM-postprint draft.pdf

Solo gestori archvio

Tipologia: Post-print
Dimensione 407.73 kB
Formato Adobe PDF
407.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
preprint.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 222.86 kB
Formato Adobe PDF
222.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/534037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact