Climate change will have an influence on the world's 8 billion inhabitants, the majority of whom live in cities, which account for roughly two-thirds of the CO2 emissions that are at the root of the climate crisis. To attain a net-zero carbon future, a rapid transition across business models and policy is required. At the same time, policy and legislation are struggling to keep up with smart technology and the Internet of Things. The management of smart urban infrastructure is the key to successful decarbonisation and the achievement of sustainable cities. In this framework, the smart electricity infrastructure shall be equipped with integrated technologies, such solar panels, storage facilities, electric vehicle charging, intelligent public lighting system and sensor connected to a digital platform. This paradigm has changed the view of the power system itself, as decades ago the energy infrastructure was built for a centralised power system, not for a decentralised and digitalized system when energy flows in a bi-directional way within the grid. This increases the advanced metering and ICT solutions for a proper and safe management of the grid itself. This Ph.D. thesis proposes a smart architecture, as well as smart equipment and solutions, to suit the needs of the new power grid that will support smart energy districts. The developed architecture provides a distributed measurement system to keep the distributor updated about the status of the grid. Power Line Communication (PLC) has been chosen as communication technology in order to allow the DSO to reduce the cost of the upgrade of the grid and keep the control over the communication medium. Within this architecture, several devices have been developed. In detail, a concentrator and a remote PLC bridge implementing the PLC-PRIME v1.4 protocol have been developed to fulfil the requirements of the architecture. An IEC-6100-4-3/4-7 Class S Power quality analyser has been implemented on a low cost STMicroelectronics platform already used for smart metering applications. Starting from field measurement data collection, a specific software has been developed as oracle for the SCADA system in order to provide Distribution System Operators (DSOs) with valuable information for a better management of the power grid.
(2022). DEVELOPMENT AND CHARACTERIZATION OF ADVANCED METERING AND ICT SOLUTIONS FOR SMART ENERGY DISTRICTS.
DEVELOPMENT AND CHARACTERIZATION OF ADVANCED METERING AND ICT SOLUTIONS FOR SMART ENERGY DISTRICTS
PANZAVECCHIA, Nicola
2022-04-01
Abstract
Climate change will have an influence on the world's 8 billion inhabitants, the majority of whom live in cities, which account for roughly two-thirds of the CO2 emissions that are at the root of the climate crisis. To attain a net-zero carbon future, a rapid transition across business models and policy is required. At the same time, policy and legislation are struggling to keep up with smart technology and the Internet of Things. The management of smart urban infrastructure is the key to successful decarbonisation and the achievement of sustainable cities. In this framework, the smart electricity infrastructure shall be equipped with integrated technologies, such solar panels, storage facilities, electric vehicle charging, intelligent public lighting system and sensor connected to a digital platform. This paradigm has changed the view of the power system itself, as decades ago the energy infrastructure was built for a centralised power system, not for a decentralised and digitalized system when energy flows in a bi-directional way within the grid. This increases the advanced metering and ICT solutions for a proper and safe management of the grid itself. This Ph.D. thesis proposes a smart architecture, as well as smart equipment and solutions, to suit the needs of the new power grid that will support smart energy districts. The developed architecture provides a distributed measurement system to keep the distributor updated about the status of the grid. Power Line Communication (PLC) has been chosen as communication technology in order to allow the DSO to reduce the cost of the upgrade of the grid and keep the control over the communication medium. Within this architecture, several devices have been developed. In detail, a concentrator and a remote PLC bridge implementing the PLC-PRIME v1.4 protocol have been developed to fulfil the requirements of the architecture. An IEC-6100-4-3/4-7 Class S Power quality analyser has been implemented on a low cost STMicroelectronics platform already used for smart metering applications. Starting from field measurement data collection, a specific software has been developed as oracle for the SCADA system in order to provide Distribution System Operators (DSOs) with valuable information for a better management of the power grid.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato Nicola Panzavecchia-XXXIV.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Dimensione
7.76 MB
Formato
Adobe PDF
|
7.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.