Carbon in the upper mantle controls incipient melting of carbonated peridotite and so acts as a critical driver of plate tectonics. The carbon-rich melts that form control the rate of volatile outflux from the Earth’s interior, contributing to climate evolution over geological times. However, attempts to constrain the carbon concentrations of the mantle source beneath oceanic islands and continental rifts is complicated by pre-eruptive volatile loss from magmas. Here, we compile literature data on magmatic gases, as a surface expression of the pre-eruptive volatile loss, from 12 oceanic island and continental rift volcanoes. We find that the levels of carbon enrichment in magmatic gases correlate with the trace element signatures of the corresponding volcanic rocks, implying a mantle source control. We use this global association to estimate that the mean carbon concentration in the upper mantle, down to 200 km depth, is approximately 350 ppm (range 117–669 ppm). We interpret carbon mantle heterogeneities to reflect variable extents of mantle metasomatism from carbonated silicate melts. Finally, we find that the extent of carbon enrichment in the upper mantle positively correlates with the depth at which melting starts. Our results imply a major role of carbon in driving melt formation in the upper mantle.

Aiuppa A., Casetta F., Coltorti M., Stagno V., Tamburello G. (2021). Carbon concentration increases with depth of melting in Earth’s upper mantle. NATURE GEOSCIENCE, 14(9), 697-703 [10.1038/s41561-021-00797-y].

Carbon concentration increases with depth of melting in Earth’s upper mantle

Aiuppa A.;Tamburello G.
2021-01-01

Abstract

Carbon in the upper mantle controls incipient melting of carbonated peridotite and so acts as a critical driver of plate tectonics. The carbon-rich melts that form control the rate of volatile outflux from the Earth’s interior, contributing to climate evolution over geological times. However, attempts to constrain the carbon concentrations of the mantle source beneath oceanic islands and continental rifts is complicated by pre-eruptive volatile loss from magmas. Here, we compile literature data on magmatic gases, as a surface expression of the pre-eruptive volatile loss, from 12 oceanic island and continental rift volcanoes. We find that the levels of carbon enrichment in magmatic gases correlate with the trace element signatures of the corresponding volcanic rocks, implying a mantle source control. We use this global association to estimate that the mean carbon concentration in the upper mantle, down to 200 km depth, is approximately 350 ppm (range 117–669 ppm). We interpret carbon mantle heterogeneities to reflect variable extents of mantle metasomatism from carbonated silicate melts. Finally, we find that the extent of carbon enrichment in the upper mantle positively correlates with the depth at which melting starts. Our results imply a major role of carbon in driving melt formation in the upper mantle.
2021
Aiuppa A., Casetta F., Coltorti M., Stagno V., Tamburello G. (2021). Carbon concentration increases with depth of melting in Earth’s upper mantle. NATURE GEOSCIENCE, 14(9), 697-703 [10.1038/s41561-021-00797-y].
File in questo prodotto:
File Dimensione Formato  
Aiuppa et al 2021 NatGeo.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
32250_2_merged_1623227953.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/530315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 36
social impact