We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with the more negative compositions observed in N2-dominated samples. The carbon-helium relationship indicates that these negative δ13C compositions could be due to isotopic fractionation processes during CO2 dissolution into groundwater. In contrast, CO2-rich samples reflect mixing between crustal and mantle-derived CO2. Our estimated mantle-derived He flux (9.0 × 109 atoms m−2 s−1) is up to 2 orders of magnitude higher than the typical fluxes in stable continental areas, suggesting a structural/tectonic setting favoring the migration of deep-mantle fluids through the crust.

Randazzo P., Caracausi A., Aiuppa A., Cardellini C., Chiodini G., D'Alessandro W., et al. (2021). Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, 22(11) [10.1029/2021GC010017].

Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia

Randazzo P.
;
Aiuppa A.;Li Vigni L.;
2021

Abstract

We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with the more negative compositions observed in N2-dominated samples. The carbon-helium relationship indicates that these negative δ13C compositions could be due to isotopic fractionation processes during CO2 dissolution into groundwater. In contrast, CO2-rich samples reflect mixing between crustal and mantle-derived CO2. Our estimated mantle-derived He flux (9.0 × 109 atoms m−2 s−1) is up to 2 orders of magnitude higher than the typical fluxes in stable continental areas, suggesting a structural/tectonic setting favoring the migration of deep-mantle fluids through the crust.
Randazzo P., Caracausi A., Aiuppa A., Cardellini C., Chiodini G., D'Alessandro W., et al. (2021). Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, 22(11) [10.1029/2021GC010017].
File in questo prodotto:
File Dimensione Formato  
Randazzo et al 2021 202021GC010017.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/530277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact