The geographic traceability of food products through the use of chemical markers is an important challenge to ensure quality and authenticity of food. In recent years, the behaviour of Rare Earth Elements (REE) has been identified as possible tool for food geographical identification based on their known capability of tracing pedo-genetic and petro-genetic processes. In this thesis, the behaviour of REE in the Soil/Vitis vinifera L. system has been explored using a geochemical approach. The goal is to understand if the normalized pattern of REE (REE*) can be a useful tool to trace the geographical origin of food. REE may be accumulated in plants keeping their distribution in passing from soil to leaves or fruits. However, the mechanism of soil/plant REE transfer is poorly known, even if leaves may incorporate metals leached from atmospheric dust particles in particular environmental conditions. We focused on plants grown in both greenhouse and field using REE enriched and non-enriched substrates wondering if REE soil enrichments influence the growth of Vitis vinifera L. and the REE accumulation in plant organs testing the use of REE* as discriminator of small amounts of REE in the soil. We, also, have evaluated the role of xylem-sap in the transfer of REE transfer and the possible physiological impact in Vitis vinifera L. We found that the stress generated by REE enriched soil does not influence neither the plant mass nor the REE accumulation in leaves and demonstrated that the REE* in plant organs traces enriched soil substrates discriminating plants from different soils of growth. This work allows to propose that REE* as potential marker for identifying the substrate where Vitis vinifera L. grows. This work yields, also, important consequences from environmental perspective: since the REE amount in the substrates does not influence the amount accumulated in leaves REE polluted soils should not influence the amount of REE found in Vitis vinifera L food-products. Finally, discrimination of substrate enrichments suggests that REE* is a potential tool for quality and safety of other ecosystems. Our experimental investigation improves our knowledge on REE uptake in soil-Vitis vinifera L. system, highlighting the potential use of REE as biogeochemical tracers of environmental conditions.

(2021). Behaviour of REE in the soil/Vitis Vinifera L. system. Geochemical Approach for Food Traceability [10.1016/j.chemosphere.2020.128993].

Behaviour of REE in the soil/Vitis Vinifera L. system. Geochemical Approach for Food Traceability

BARBERA, Marcella
2021-12-17

Abstract

The geographic traceability of food products through the use of chemical markers is an important challenge to ensure quality and authenticity of food. In recent years, the behaviour of Rare Earth Elements (REE) has been identified as possible tool for food geographical identification based on their known capability of tracing pedo-genetic and petro-genetic processes. In this thesis, the behaviour of REE in the Soil/Vitis vinifera L. system has been explored using a geochemical approach. The goal is to understand if the normalized pattern of REE (REE*) can be a useful tool to trace the geographical origin of food. REE may be accumulated in plants keeping their distribution in passing from soil to leaves or fruits. However, the mechanism of soil/plant REE transfer is poorly known, even if leaves may incorporate metals leached from atmospheric dust particles in particular environmental conditions. We focused on plants grown in both greenhouse and field using REE enriched and non-enriched substrates wondering if REE soil enrichments influence the growth of Vitis vinifera L. and the REE accumulation in plant organs testing the use of REE* as discriminator of small amounts of REE in the soil. We, also, have evaluated the role of xylem-sap in the transfer of REE transfer and the possible physiological impact in Vitis vinifera L. We found that the stress generated by REE enriched soil does not influence neither the plant mass nor the REE accumulation in leaves and demonstrated that the REE* in plant organs traces enriched soil substrates discriminating plants from different soils of growth. This work allows to propose that REE* as potential marker for identifying the substrate where Vitis vinifera L. grows. This work yields, also, important consequences from environmental perspective: since the REE amount in the substrates does not influence the amount accumulated in leaves REE polluted soils should not influence the amount of REE found in Vitis vinifera L food-products. Finally, discrimination of substrate enrichments suggests that REE* is a potential tool for quality and safety of other ecosystems. Our experimental investigation improves our knowledge on REE uptake in soil-Vitis vinifera L. system, highlighting the potential use of REE as biogeochemical tracers of environmental conditions.
17-dic-2021
Rare Earth Elements; Food Traceability; Geochemical Markers; Normalised Spectra of REE; Soil-Vitis vinifera L. System
(2021). Behaviour of REE in the soil/Vitis Vinifera L. system. Geochemical Approach for Food Traceability [10.1016/j.chemosphere.2020.128993].
File in questo prodotto:
File Dimensione Formato  
PhD Thesis Marcella Barbera.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/526118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact