Let A be an associative algebra with involution ∗ over a field of characteristic zero. A central ∗-polynomial of A is a polynomial in non- commutative variables that takes central values in A. Here we prove the existence of two limits called the central ∗-exponent and the proper central ∗-exponent that give a measure of the growth of the central ∗-polynomials and proper central ∗-polynomials, respectively. Moreover, we compare them with the PI-∗-exponent of the algebra.

Fabrizio Martino, Carla Rizzo (2022). Growth of central polynomials of algebras with involution. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 375(1), 429-453 [10.1090/tran/8533].

Growth of central polynomials of algebras with involution

Fabrizio Martino
;
Carla Rizzo
2022-01-01

Abstract

Let A be an associative algebra with involution ∗ over a field of characteristic zero. A central ∗-polynomial of A is a polynomial in non- commutative variables that takes central values in A. Here we prove the existence of two limits called the central ∗-exponent and the proper central ∗-exponent that give a measure of the growth of the central ∗-polynomials and proper central ∗-polynomials, respectively. Moreover, we compare them with the PI-∗-exponent of the algebra.
gen-2022
Fabrizio Martino, Carla Rizzo (2022). Growth of central polynomials of algebras with involution. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 375(1), 429-453 [10.1090/tran/8533].
File in questo prodotto:
File Dimensione Formato  
S0002-9947-2021-08533-5.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 343.58 kB
Formato Adobe PDF
343.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
post_print_martino_handle_10447_525569.pdf

accesso aperto

Tipologia: Post-print
Dimensione 432.7 kB
Formato Adobe PDF
432.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/525569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact