We consider nonlinear elliptic equations driven by a nonhomogeneous differential operator plus an indefinite potential. The boundary condition is either Dirichlet or Robin (including as a special case the Neumann problem). First we present the corresponding regularity theory (up to the boundary). Then we develop the nonlinear maximum principle and present some important nonlinear strong comparison principles. Subsequently we see how these results together with variational methods, truncation and perturbation techniques, and Morse theory (critical groups) can be used to analyze different classes of elliptic equations. Special attention is given to (p, 2)-equations (these are equations driven by the sum of a p- Laplacian and a Laplacian), where stronger results can be stated.

Papageorgiou N.S., Vetro C., Vetro F. (2019). Nonlinear nonhomogeneous elliptic problems. In Dutta Hemen, Kočinac Ljubiša D. R., Srivastava Hari M. (a cura di), Current Trends in Mathematical Analysis and its Interdisciplinary Applications (pp. 647-713). Springer International Publishing [10.1007/978-3-030-15242-0_17].

Nonlinear nonhomogeneous elliptic problems

Vetro C.
;
2019-01-01

Abstract

We consider nonlinear elliptic equations driven by a nonhomogeneous differential operator plus an indefinite potential. The boundary condition is either Dirichlet or Robin (including as a special case the Neumann problem). First we present the corresponding regularity theory (up to the boundary). Then we develop the nonlinear maximum principle and present some important nonlinear strong comparison principles. Subsequently we see how these results together with variational methods, truncation and perturbation techniques, and Morse theory (critical groups) can be used to analyze different classes of elliptic equations. Special attention is given to (p, 2)-equations (these are equations driven by the sum of a p- Laplacian and a Laplacian), where stronger results can be stated.
2019
Papageorgiou N.S., Vetro C., Vetro F. (2019). Nonlinear nonhomogeneous elliptic problems. In Dutta Hemen, Kočinac Ljubiša D. R., Srivastava Hari M. (a cura di), Current Trends in Mathematical Analysis and its Interdisciplinary Applications (pp. 647-713). Springer International Publishing [10.1007/978-3-030-15242-0_17].
File in questo prodotto:
File Dimensione Formato  
Chapter17_PapageorgiouVetroVetro_Current_Trends_in_Mathematical_Analysis_and_its_Interdisciplinary_A.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 638.05 kB
Formato Adobe PDF
638.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PVV(Birkhauser copyright form).pdf

Solo gestori archvio

Descrizione: Contratto editore/Agreement editore
Tipologia: Contratto con l'editore (ATTENZIONE: NON TRASFERIRE A SITO DOCENTE)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/525542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact