We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Fu r t h e r applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Cigoli, A., Mantovani, S., Metere, G., Vitale, E. (2022). Fibred-categorical obstruction theory. JOURNAL OF ALGEBRA, 593, 105-141 [10.1016/j.jalgebra.2021.10.040].

Fibred-categorical obstruction theory

Cigoli, A. S.;Metere, G.
;
2022-03-01

Abstract

We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Fu r t h e r applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.
1-mar-2022
Cigoli, A., Mantovani, S., Metere, G., Vitale, E. (2022). Fibred-categorical obstruction theory. JOURNAL OF ALGEBRA, 593, 105-141 [10.1016/j.jalgebra.2021.10.040].
File in questo prodotto:
File Dimensione Formato  
Categorical obstruction theory arXiv rev4.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Pre-print
Dimensione 405.91 kB
Formato Adobe PDF
405.91 kB Adobe PDF Visualizza/Apri
Journal of Algebra 593 (2022) 105–141.pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 7.43 MB
Formato Adobe PDF
7.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/525060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact