We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Fu r t h e r applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.
Cigoli, A., Mantovani, S., Metere, G., Vitale, E. (2022). Fibred-categorical obstruction theory. JOURNAL OF ALGEBRA, 593, 105-141 [10.1016/j.jalgebra.2021.10.040].
Fibred-categorical obstruction theory
Cigoli, A. S.;Metere, G.
;
2022-03-01
Abstract
We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Fu r t h e r applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Categorical obstruction theory arXiv rev4.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Pre-print
Dimensione
405.91 kB
Formato
Adobe PDF
|
405.91 kB | Adobe PDF | Visualizza/Apri |
Journal of Algebra 593 (2022) 105–141.pdf
Solo gestori archvio
Descrizione: articolo principale
Tipologia:
Versione Editoriale
Dimensione
7.43 MB
Formato
Adobe PDF
|
7.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.