The aim of the present study was to analyze and compare the effects of several metals on the embryos of the sea urchin Paracentrotus lividus, a key species within the Mediterranean Sea ecosystem. Embryos were continuously exposed from fertilization to the following metals: 0.6 mg/l copper, 3 mg/l lead, and 6 mg/l nickel. The embryos were then monitored for metal responses at the gastrula stage, which occurred 24 h after exposure. A biochemical multi-experimental approach was taken and involved the investigation of the levels of HSC70 expression and the involvement of heat shock factor (HSF) and/or metal transcription factor (MTF) in the response. Immunoblotting assays and electrophoretic mobility shift assays (EMSA) were used to detect stress protein levels and to study the interaction between DNA and specific transcription factors, respectively. In the 1 h during exposure to heavy metals, changes in HSC70 levels and HSC70 a phosphorylation state were observed. Rapid changes in HSF and MTF DNA-binding activity also occurred during the early stages of heavy metal exposure. In contrast, few developmental abnormalities were observed at the gastrula stage but more abnormalities were observed 48 h after metal exposure. These data demonstrate that changes in HSC70 levels and phosphorylation state as well as in HSF and MTF binding activities may be used to rapidly detect responses to heavy metal exposure. Detection of biochemical and molecular changes in response to metal exposure before manifestation of morpho-pathological effects are important for the prediction of morbidity, and these markers will be useful for determining the response to exposure as part of a toxicological exposure–response experiment and for determining responses for an impact assessment.

Pinsino, A., Turturici, G., Sconzo, G., Geraci, F. (2011). Rapid changes in heat-shock cognate 70 levels, heat-shock cognate phosphorylation state, heat-shock transcription factor, and metal transcription factor activity levels in response to heavy metal exposure during sea urchin embryonic development. ECOTOXICOLOGY, 20, 246-254.

Rapid changes in heat-shock cognate 70 levels, heat-shock cognate phosphorylation state, heat-shock transcription factor, and metal transcription factor activity levels in response to heavy metal exposure during sea urchin embryonic development.

PINSINO, Annalisa;TURTURICI, Giuseppina;SCONZO, Gabriella;GERACI, Fabiana
2011-01-01

Abstract

The aim of the present study was to analyze and compare the effects of several metals on the embryos of the sea urchin Paracentrotus lividus, a key species within the Mediterranean Sea ecosystem. Embryos were continuously exposed from fertilization to the following metals: 0.6 mg/l copper, 3 mg/l lead, and 6 mg/l nickel. The embryos were then monitored for metal responses at the gastrula stage, which occurred 24 h after exposure. A biochemical multi-experimental approach was taken and involved the investigation of the levels of HSC70 expression and the involvement of heat shock factor (HSF) and/or metal transcription factor (MTF) in the response. Immunoblotting assays and electrophoretic mobility shift assays (EMSA) were used to detect stress protein levels and to study the interaction between DNA and specific transcription factors, respectively. In the 1 h during exposure to heavy metals, changes in HSC70 levels and HSC70 a phosphorylation state were observed. Rapid changes in HSF and MTF DNA-binding activity also occurred during the early stages of heavy metal exposure. In contrast, few developmental abnormalities were observed at the gastrula stage but more abnormalities were observed 48 h after metal exposure. These data demonstrate that changes in HSC70 levels and phosphorylation state as well as in HSF and MTF binding activities may be used to rapidly detect responses to heavy metal exposure. Detection of biochemical and molecular changes in response to metal exposure before manifestation of morpho-pathological effects are important for the prediction of morbidity, and these markers will be useful for determining the response to exposure as part of a toxicological exposure–response experiment and for determining responses for an impact assessment.
2011
Settore BIO/06 - Anatomia Comparata E Citologia
Pinsino, A., Turturici, G., Sconzo, G., Geraci, F. (2011). Rapid changes in heat-shock cognate 70 levels, heat-shock cognate phosphorylation state, heat-shock transcription factor, and metal transcription factor activity levels in response to heavy metal exposure during sea urchin embryonic development. ECOTOXICOLOGY, 20, 246-254.
File in questo prodotto:
File Dimensione Formato  
2- Ecotox 2010 fulltext.pdf

Solo gestori archvio

Dimensione 287.03 kB
Formato Adobe PDF
287.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/51875
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact