We classify all (finitely dimensional nilpotent Lie k-algebras h with 2-dimensional commutator ideals h', extending a known result to the case where h' is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h' is central, it is independent of k if h' is non-central and is uniquely determined by the dimension of h. In the case where k is algebraically or real closed, we also list all nilpotent Lie k-algebras h with 2-dimensional central commutator ideals h' and dimk h < 12.

Bartolone, C., Di Bartolo A, Falcone G (2011). Nilpotent Lie algebras with 2-dimensional commutator ideals. LINEAR ALGEBRA AND ITS APPLICATIONS, 434(3), 650-656 [doi:10.1016/j.laa.2010.09.036].

Nilpotent Lie algebras with 2-dimensional commutator ideals

BARTOLONE, Claudio;DI BARTOLO, Alfonso;FALCONE, Giovanni
2011-01-01

Abstract

We classify all (finitely dimensional nilpotent Lie k-algebras h with 2-dimensional commutator ideals h', extending a known result to the case where h' is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h' is central, it is independent of k if h' is non-central and is uniquely determined by the dimension of h. In the case where k is algebraically or real closed, we also list all nilpotent Lie k-algebras h with 2-dimensional central commutator ideals h' and dimk h < 12.
2011
Bartolone, C., Di Bartolo A, Falcone G (2011). Nilpotent Lie algebras with 2-dimensional commutator ideals. LINEAR ALGEBRA AND ITS APPLICATIONS, 434(3), 650-656 [doi:10.1016/j.laa.2010.09.036].
File in questo prodotto:
File Dimensione Formato  
bartolone_et_al_2011.pdf

Solo gestori archvio

Dimensione 164.03 kB
Formato Adobe PDF
164.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/51845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact