A semiclassical Monte Carlo approach is adopted to study the multivalley spin depolarization of drifting electrons in a doped n-type GaAs bulk semiconductor, in a wide range of lattice temperature (40 K < T_L < 300 K) and doping density (10^{13} cm^{−3} < n < 10^{16} cm^{−3}). The decay of the initial non-equilibrium spin polarization of the conduction electrons is investigated as a function of the amplitude of the driving static electric field, ranging between 0.1 and 6 kV cm^{−1}, by considering the spin dynamics of electrons in both the Γ-valley and the upper valleys of the semiconductor. Doping density considerably affects spin relaxation at low temperature and weak intensity of the driving electric field. At high values of the electric field, the strong spin–orbit coupling of electrons in the L-valleys significantly reduces the average spin polarization lifetime, but, unexpectedly, for field amplitudes greater than 2.5 kV cm^{−1}, the spin lifetime increases with the lattice temperature. Our numerical findings are validated by a good agreement with the available experimental results and with calculations recently obtained by a different theoretical approach.

Spezia, S., Persano Adorno, D., Pizzolato, N., Spagnolo, B. (2010). Relaxation of electron spin during high-field transport in GaAs bulk. JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT, 1742-5468/10/P11033, 1-13 [10.1088/1742-5468/2010/11/P11033].

Relaxation of electron spin during high-field transport in GaAs bulk

SPEZIA, Stefano;PERSANO ADORNO, Dominique;PIZZOLATO, Nicola;SPAGNOLO, Bernardo
2010-01-01

Abstract

A semiclassical Monte Carlo approach is adopted to study the multivalley spin depolarization of drifting electrons in a doped n-type GaAs bulk semiconductor, in a wide range of lattice temperature (40 K < T_L < 300 K) and doping density (10^{13} cm^{−3} < n < 10^{16} cm^{−3}). The decay of the initial non-equilibrium spin polarization of the conduction electrons is investigated as a function of the amplitude of the driving static electric field, ranging between 0.1 and 6 kV cm^{−1}, by considering the spin dynamics of electrons in both the Γ-valley and the upper valleys of the semiconductor. Doping density considerably affects spin relaxation at low temperature and weak intensity of the driving electric field. At high values of the electric field, the strong spin–orbit coupling of electrons in the L-valleys significantly reduces the average spin polarization lifetime, but, unexpectedly, for field amplitudes greater than 2.5 kV cm^{−1}, the spin lifetime increases with the lattice temperature. Our numerical findings are validated by a good agreement with the available experimental results and with calculations recently obtained by a different theoretical approach.
2010
Spezia, S., Persano Adorno, D., Pizzolato, N., Spagnolo, B. (2010). Relaxation of electron spin during high-field transport in GaAs bulk. JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT, 1742-5468/10/P11033, 1-13 [10.1088/1742-5468/2010/11/P11033].
File in questo prodotto:
File Dimensione Formato  
1742-5468_2010_11_P11033.pdf

Solo gestori archvio

Descrizione: Article
Dimensione 386.24 kB
Formato Adobe PDF
386.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/51842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 13
social impact