We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong degree of clustering in the data, we then formulate a more complex model, fitting a spatio-temporal Log-Gaussian Cox process to the point process on the linear network, addressing the problem of the choice of the most appropriate distance metric.

Nicoletta D'Angelo, Giada Adelfio, Antonino Abbruzzo, Jorge Mateu (2022). Inhomogeneous spatio-temporal point processes on linear networks for visitors' stops data. THE ANNALS OF APPLIED STATISTICS, 16(2), 791-815 [10.1214/21-AOAS1519].

Inhomogeneous spatio-temporal point processes on linear networks for visitors' stops data

Nicoletta D'Angelo
;
Giada Adelfio;Antonino Abbruzzo;
2022-01-01

Abstract

We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong degree of clustering in the data, we then formulate a more complex model, fitting a spatio-temporal Log-Gaussian Cox process to the point process on the linear network, addressing the problem of the choice of the most appropriate distance metric.
2022
Nicoletta D'Angelo, Giada Adelfio, Antonino Abbruzzo, Jorge Mateu (2022). Inhomogeneous spatio-temporal point processes on linear networks for visitors' stops data. THE ANNALS OF APPLIED STATISTICS, 16(2), 791-815 [10.1214/21-AOAS1519].
File in questo prodotto:
File Dimensione Formato  
AOAS1519.pdf

Solo gestori archvio

Descrizione: Articolo completo
Tipologia: Versione Editoriale
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/515369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact