Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while $in ,,situ$ soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions ( $r^{2} = 0.59$ for gravimetric method; $r^{2} = 0.65$ for TDR). The proposed method shows promising results to map the soil water content even over vegetated or shadowed areas by exploiting hyperspatial resolution data and geostatistical analysis.

Paruta A., Ciraolo G., Capodici F., Manfreda S., Dal Sasso S.F., Zhuang R., et al. (2021). A Geostatistical Approach to Map Near-Surface Soil Moisture through Hyperspatial Resolution Thermal Inertia. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 59(6), 5352-5369 [10.1109/TGRS.2020.3019200].

A Geostatistical Approach to Map Near-Surface Soil Moisture through Hyperspatial Resolution Thermal Inertia

Paruta A.
Primo
Membro del Collaboration Group
;
Ciraolo G.
Membro del Collaboration Group
;
Capodici F.
Membro del Collaboration Group
;
Maltese A.
Ultimo
Membro del Collaboration Group
2021-06-01

Abstract

Thermal inertia has been applied to map soil water content exploiting remote sensing data in the short and long wave regions of the electromagnetic spectrum. Over the last years, optical and thermal cameras were sufficiently miniaturized to be loaded onboard of unmanned aerial systems (UASs), which provide unprecedented potentials to derive hyperspatial resolution thermal inertia for soil water content mapping. In this study, we apply a simplification of thermal inertia, the apparent thermal inertia (ATI), over pixels where underlying thermal inertia hypotheses are fulfilled (unshaded bare soil). Then, a kriging algorithm is used to spatialize the ATI to get a soil water content map. The proposed method was applied to an experimental area of the Alento River catchment, in southern Italy. Daytime radiometric optical multispectral and day and nighttime radiometric thermal images were acquired via a UAS, while $in ,,situ$ soil water content was measured through the thermo-gravimetric and time domain reflectometry (TDR) methods. The determination coefficient between ATI and soil water content measured over unshaded bare soil was 0.67 for the gravimetric method and 0.73 for the TDR. After interpolation, the correlation slightly decreased due to the introduction of measurements on vegetated or shadowed positions ( $r^{2} = 0.59$ for gravimetric method; $r^{2} = 0.65$ for TDR). The proposed method shows promising results to map the soil water content even over vegetated or shadowed areas by exploiting hyperspatial resolution data and geostatistical analysis.
giu-2021
Paruta A., Ciraolo G., Capodici F., Manfreda S., Dal Sasso S.F., Zhuang R., et al. (2021). A Geostatistical Approach to Map Near-Surface Soil Moisture through Hyperspatial Resolution Thermal Inertia. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 59(6), 5352-5369 [10.1109/TGRS.2020.3019200].
File in questo prodotto:
File Dimensione Formato  
Paruta et al 2020_published.pdf

Solo gestori archvio

Descrizione: Manoscritto
Tipologia: Versione Editoriale
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/514131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact