Understanding guided wave propagation in multi-layered plates and interaction with discontinuities can be difficult, as well as the interpretation of the ultrasonic signals. Propagation of guided waves can be studied analytically solving the equations of motion with the proper boundary conditions; nevertheless analytical models can be difficult to solve for complex multi-layered structures or having inner discontinuities. The problem can be efficiently studied using numerical techniques. Simulation of guided wave propagation in multi-layered structures, for ultrasonic waves in the MHz range, is solved here with the finite element analysis based on an explicit integration rule to solve the equations of motion in a dynamic analysis. Simulation allows a better understanding of propagation and interference phenomena by creating a window of observation in the multi-layered plate. Numerical results determined for a three-layer Al plate, without or with discontinuities, matched very well with experiments, providing an efficient tool to visualize and extract significant information in the transmitted waves and to optimize wave mode and configuration for a rigorous ultrasonic inspection.

Cerniglia, D., Pantano, A., Montinaro, N. (2010). 3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures. NDT & E INTERNATIONAL, 43, 527-535 [10.1016/j.ndteint.2010.05.009].

3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures

CERNIGLIA, Donatella;PANTANO, Antonio;MONTINARO, Nicola
2010-01-01

Abstract

Understanding guided wave propagation in multi-layered plates and interaction with discontinuities can be difficult, as well as the interpretation of the ultrasonic signals. Propagation of guided waves can be studied analytically solving the equations of motion with the proper boundary conditions; nevertheless analytical models can be difficult to solve for complex multi-layered structures or having inner discontinuities. The problem can be efficiently studied using numerical techniques. Simulation of guided wave propagation in multi-layered structures, for ultrasonic waves in the MHz range, is solved here with the finite element analysis based on an explicit integration rule to solve the equations of motion in a dynamic analysis. Simulation allows a better understanding of propagation and interference phenomena by creating a window of observation in the multi-layered plate. Numerical results determined for a three-layer Al plate, without or with discontinuities, matched very well with experiments, providing an efficient tool to visualize and extract significant information in the transmitted waves and to optimize wave mode and configuration for a rigorous ultrasonic inspection.
2010
Cerniglia, D., Pantano, A., Montinaro, N. (2010). 3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures. NDT & E INTERNATIONAL, 43, 527-535 [10.1016/j.ndteint.2010.05.009].
File in questo prodotto:
File Dimensione Formato  
JNDT1174.pdf

Solo gestori archvio

Descrizione: Articolo pubblicato
Dimensione 935.78 kB
Formato Adobe PDF
935.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/51189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 37
social impact