The response of a trapping overdamped monostable system to a harmonic perturbation is analyzed, in the context of stochastic resonance phenomenon. We consider the dynamics of a Brownian particle moving in a piecewise linear potential with a white Gaussian noise source. Based on linear-response theory and Laplace transform technique, analytical expressions of signal-to-noise ratio (SNR) and signal power amplification (SPA) are obtained. We find that the SNR is a nonmonotonic function of the noise intensity, while the SPA is monotonic. Theoretical results are compared with numerical simulations.

Agudov, N.V., Krichigin, A.V., Valenti, D., Spagnolo, B. (2010). Stochastic resonance in a trapping overdamped monostable system. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 81, 1-8 [10.1103/PhysRevE.81.051123].

Stochastic resonance in a trapping overdamped monostable system

VALENTI, Davide;SPAGNOLO, Bernardo
2010-01-01

Abstract

The response of a trapping overdamped monostable system to a harmonic perturbation is analyzed, in the context of stochastic resonance phenomenon. We consider the dynamics of a Brownian particle moving in a piecewise linear potential with a white Gaussian noise source. Based on linear-response theory and Laplace transform technique, analytical expressions of signal-to-noise ratio (SNR) and signal power amplification (SPA) are obtained. We find that the SNR is a nonmonotonic function of the noise intensity, while the SPA is monotonic. Theoretical results are compared with numerical simulations.
2010
Settore FIS/02 - Fisica Teorica, Modelli E Metodi Matematici
Agudov, N.V., Krichigin, A.V., Valenti, D., Spagnolo, B. (2010). Stochastic resonance in a trapping overdamped monostable system. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 81, 1-8 [10.1103/PhysRevE.81.051123].
File in questo prodotto:
File Dimensione Formato  
PRE_81_051123_2010.pdf

Solo gestori archvio

Dimensione 406.6 kB
Formato Adobe PDF
406.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/50181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 84
social impact