This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain Omega, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue mu(odd)(1)(Omega) with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem.
Brandolini, B., Chiacchio, F., Trombetti, C. (2013). A sharp lower bound for some neumann eigenvalues of the hermite operator. DIFFERENTIAL AND INTEGRAL EQUATIONS, 26(5-6), 639-654.
A sharp lower bound for some neumann eigenvalues of the hermite operator
Brandolini, B
;
2013-01-01
Abstract
This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain Omega, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue mu(odd)(1)(Omega) with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Die(2013).pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
457.03 kB
Formato
Adobe PDF
|
457.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.