This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain Omega, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue mu(odd)(1)(Omega) with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem.

Brandolini, B., Chiacchio, F., & Trombetti, C. (2013). A sharp lower bound for some neumann eigenvalues of the hermite operator. DIFFERENTIAL AND INTEGRAL EQUATIONS, 26(5-6), 639-654.

A sharp lower bound for some neumann eigenvalues of the hermite operator

Brandolini, B
;
2013

Abstract

This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain Omega, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue mu(odd)(1)(Omega) with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem.
Settore MAT/05 - Analisi Matematica
Brandolini, B., Chiacchio, F., & Trombetti, C. (2013). A sharp lower bound for some neumann eigenvalues of the hermite operator. DIFFERENTIAL AND INTEGRAL EQUATIONS, 26(5-6), 639-654.
File in questo prodotto:
File Dimensione Formato  
Die(2013).pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 457.03 kB
Formato Adobe PDF
457.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/494179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact