The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.

Brandolini B., Gavitone N., Nitsch C., Trombetti C. (2014). Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampère type. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 101(6), 828-841 [10.1016/j.matpur.2013.10.005].

Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampère type

Brandolini B.;
2014-01-01

Abstract

The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.
2014
Brandolini B., Gavitone N., Nitsch C., Trombetti C. (2014). Characterization of ellipsoids through an overdetermined boundary value problem of Monge-Ampère type. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 101(6), 828-841 [10.1016/j.matpur.2013.10.005].
File in questo prodotto:
File Dimensione Formato  
JMPA(2014).pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Post-print
Dimensione 393.88 kB
Formato Adobe PDF
393.88 kB Adobe PDF Visualizza/Apri
Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type.pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 243.69 kB
Formato Adobe PDF
243.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/494159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact