Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Brandolini B., Nitsch C., Salani P., & Trombetti C. (2009). Stability of radial symmetry for a Monge-Ampère overdetermined problem. ANNALI DI MATEMATICA PURA ED APPLICATA, 188(3), 445-453 [10.1007/s10231-008-0083-4].

Stability of radial symmetry for a Monge-Ampère overdetermined problem

Brandolini B.;
2009

Abstract

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
Settore MAT/05 - Analisi Matematica
Brandolini B., Nitsch C., Salani P., & Trombetti C. (2009). Stability of radial symmetry for a Monge-Ampère overdetermined problem. ANNALI DI MATEMATICA PURA ED APPLICATA, 188(3), 445-453 [10.1007/s10231-008-0083-4].
File in questo prodotto:
File Dimensione Formato  
AnnalidiMatematica(2009).pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 151.99 kB
Formato Adobe PDF
151.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/494028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact