Abstract. Let Ω be a smooth, convex, unbounded domain of R N. Denote by μ1(Ω) the first nontrivial Neumann eigenvalue of the Hermite operator in Ω; we prove that μ1(Ω) ≥ 1. The result is sharp since equality sign is achieved when Ω is a N-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space H1(Ω, dγN), where γN is the N-dimensional Gaussian measure. © International Press 2013.

Brandolini B., Chiacchio F., Henrot A., & Trombetti C. (2013). An optimal Poincaré-Wirtinger inequality in gauss space. MATHEMATICAL RESEARCH LETTERS, 20(3), 449-457 [10.4310/MRL.2013.v20.n3.a3].

An optimal Poincaré-Wirtinger inequality in gauss space

Brandolini B.
;
2013

Abstract

Abstract. Let Ω be a smooth, convex, unbounded domain of R N. Denote by μ1(Ω) the first nontrivial Neumann eigenvalue of the Hermite operator in Ω; we prove that μ1(Ω) ≥ 1. The result is sharp since equality sign is achieved when Ω is a N-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space H1(Ω, dγN), where γN is the N-dimensional Gaussian measure. © International Press 2013.
Settore MAT/05 - Analisi Matematica
Brandolini B., Chiacchio F., Henrot A., & Trombetti C. (2013). An optimal Poincaré-Wirtinger inequality in gauss space. MATHEMATICAL RESEARCH LETTERS, 20(3), 449-457 [10.4310/MRL.2013.v20.n3.a3].
File in questo prodotto:
File Dimensione Formato  
MRL(2013).pdf

Solo gestori archvio

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 198.08 kB
Formato Adobe PDF
198.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/494009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact