In this note we prove that, if Ω is a smooth, strictly convex, open set in R n (n ≥ 2) with given measure, the L 1 norm of the convex solution to the Dirichlet problem detD 2u = 1 in , u = 0 on δΩ, is minimum whenever is an ellipsoid.

Brandolini B., Nitsch C., Trombetti C. (2011). Shape optimization for monge-ampére equations via domain derivative. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 4(4), 825-831 [10.3934/dcdss.2011.4.825].

Shape optimization for monge-ampére equations via domain derivative

Brandolini B.
;
2011-01-01

Abstract

In this note we prove that, if Ω is a smooth, strictly convex, open set in R n (n ≥ 2) with given measure, the L 1 norm of the convex solution to the Dirichlet problem detD 2u = 1 in , u = 0 on δΩ, is minimum whenever is an ellipsoid.
2011
Brandolini B., Nitsch C., Trombetti C. (2011). Shape optimization for monge-ampére equations via domain derivative. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 4(4), 825-831 [10.3934/dcdss.2011.4.825].
File in questo prodotto:
File Dimensione Formato  
DCDS(2011).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 318.36 kB
Formato Adobe PDF
318.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/494001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact