In this note we prove that if u is a negative solution to a nonlinear elliptic equation involving a Hessian operator, and u is zero on the boundary of a ball, then u is radially symmetric and increasing along the radii.

Brandolini, B. (2013). On the Symmetry of Solutions to a k-Hessian Type Equation. ADVANCED NONLINEAR STUDIES, 13(2), 487-493.

On the Symmetry of Solutions to a k-Hessian Type Equation

Brandolini, B
2013

Abstract

In this note we prove that if u is a negative solution to a nonlinear elliptic equation involving a Hessian operator, and u is zero on the boundary of a ball, then u is radially symmetric and increasing along the radii.
Settore MAT/05 - Analisi Matematica
Brandolini, B. (2013). On the Symmetry of Solutions to a k-Hessian Type Equation. ADVANCED NONLINEAR STUDIES, 13(2), 487-493.
File in questo prodotto:
File Dimensione Formato  
ANS(2013).pdf

non disponibili

Tipologia: Versione Editoriale
Dimensione 80.13 kB
Formato Adobe PDF
80.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/493991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact