The present paper deals with the detailed investigation of the helium-cooled lithium lead test blanket module (HCLL-TBM) nuclear behaviour under irradiation in ITER, carried out at the Department of Nuclear Engineering of the University of Palermo adopting a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of the HCLL-TBM was set-up and inserted into an ITER 3D semiheterogeneous model that realistically simulates the reactor lay-out up to the cryostat. A Gaussian-shaped neutron source was adopted for the calculations. The main features of the HCLL-TBM nuclear response were assessed, paying a particular attention to the neutronic and photonic deposited power, the tritium production rate and the spatial distribution of their volumetric densities. Structural material irradiation damage was also investigated through the evaluation of displacement per atom and helium and hydrogen production rates.
Chiovaro, P., Di Maio, P.A., Vella, G. (2009). Study of the helium-cooled lithium lead test blanket module nuclear behaviour under irradiation in ITER. FUSION ENGINEERING AND DESIGN, 84(12), 2178-2186 [10.1016/j.fusengdes.2009.04.001].
Study of the helium-cooled lithium lead test blanket module nuclear behaviour under irradiation in ITER
CHIOVARO, Pierluigi;DI MAIO, Pietro Alessandro
;VELLA, Giuseppe
2009-01-01
Abstract
The present paper deals with the detailed investigation of the helium-cooled lithium lead test blanket module (HCLL-TBM) nuclear behaviour under irradiation in ITER, carried out at the Department of Nuclear Engineering of the University of Palermo adopting a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of the HCLL-TBM was set-up and inserted into an ITER 3D semiheterogeneous model that realistically simulates the reactor lay-out up to the cryostat. A Gaussian-shaped neutron source was adopted for the calculations. The main features of the HCLL-TBM nuclear response were assessed, paying a particular attention to the neutronic and photonic deposited power, the tritium production rate and the spatial distribution of their volumetric densities. Structural material irradiation damage was also investigated through the evaluation of displacement per atom and helium and hydrogen production rates.File | Dimensione | Formato | |
---|---|---|---|
Study of the helium-cooled lithium.pdf
Solo gestori archvio
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.