During the menopause women may experience increased oxidative stress and decreased antioxidant capacity and, together with the decline of neurosteroids, this represents a risk factor for Alzheimer’s disease. The aim of the present study was to test a functional food (FPP-ORI, Osato Research Institute, Gifu, Japan) on redox and mitochondrial efficiency in post-menopausal women. The study population consisting of 69 untreated post-menopausal women were given supplements as follows: Group A was given a multivitamin (MV) 1c 2 times a day, and group B was given FPP 4.5 g 2 times a day. Group C consisted of 23 fertile premenopausal women as the control group. The tests carried out on entry, and at 3 and 6 months were erythrocyte redox parameters, plasma oxidated proteins, brain-derived neurotrophic factor (BDNF) and peripheral blood mononuclear cell (PBMC) mitochondria cytochrome c oxidase Vmax activity. Menopausal women showed an increased malondialdehyde (MDA) (p<0.05 vs control) which was normalized by both treatments (p<0.05), but MV failed to do so in the BMI ≥26 subgroup (p<0.05). All other redox enzymes and BDNF were significantly lower in menopausal women and they responded only to FPP (p<0.05). Carbonyl protein level was higher in “BMI ≥26” subgroup (p<0.05) and reduced only by FPP (p<0.05). The PBMC cyclooxygenase to citrate synthase activity was reduced (< 40%) in the menopausal group (p<0.01) and only FPP caused a significant restoration (p<0.05). Although preliminary, these data confirm the redox and mitochondrial dysfunction occurring in post-menopause and responsive to FPP but very poorly to high dosage antioxidants. This may lead to potential preventive opportunities in menopause-associated neurodegenerative disease.

Marotta F., Marcellino M., Catanzaro R., Campiotti A., Lorenzetti A., Cervi J., et al. (2020). Mitochondrial and redox dysfunction in post-menopause as risk factor of neurodegenerative disease: A pilot study testing the role of a validated Japanese functional food. JOURNAL OF BIOLOGICAL REGULATORS & HOMEOSTATIC AGENTS, 34(1), 111-121 [10.23812/19-315-A].

Mitochondrial and redox dysfunction in post-menopause as risk factor of neurodegenerative disease: A pilot study testing the role of a validated Japanese functional food

Marotta F.;Catanzaro R.;Campiotti A.;Barbagallo M.
2020-01-01

Abstract

During the menopause women may experience increased oxidative stress and decreased antioxidant capacity and, together with the decline of neurosteroids, this represents a risk factor for Alzheimer’s disease. The aim of the present study was to test a functional food (FPP-ORI, Osato Research Institute, Gifu, Japan) on redox and mitochondrial efficiency in post-menopausal women. The study population consisting of 69 untreated post-menopausal women were given supplements as follows: Group A was given a multivitamin (MV) 1c 2 times a day, and group B was given FPP 4.5 g 2 times a day. Group C consisted of 23 fertile premenopausal women as the control group. The tests carried out on entry, and at 3 and 6 months were erythrocyte redox parameters, plasma oxidated proteins, brain-derived neurotrophic factor (BDNF) and peripheral blood mononuclear cell (PBMC) mitochondria cytochrome c oxidase Vmax activity. Menopausal women showed an increased malondialdehyde (MDA) (p<0.05 vs control) which was normalized by both treatments (p<0.05), but MV failed to do so in the BMI ≥26 subgroup (p<0.05). All other redox enzymes and BDNF were significantly lower in menopausal women and they responded only to FPP (p<0.05). Carbonyl protein level was higher in “BMI ≥26” subgroup (p<0.05) and reduced only by FPP (p<0.05). The PBMC cyclooxygenase to citrate synthase activity was reduced (< 40%) in the menopausal group (p<0.01) and only FPP caused a significant restoration (p<0.05). Although preliminary, these data confirm the redox and mitochondrial dysfunction occurring in post-menopause and responsive to FPP but very poorly to high dosage antioxidants. This may lead to potential preventive opportunities in menopause-associated neurodegenerative disease.
2020
Marotta F., Marcellino M., Catanzaro R., Campiotti A., Lorenzetti A., Cervi J., et al. (2020). Mitochondrial and redox dysfunction in post-menopause as risk factor of neurodegenerative disease: A pilot study testing the role of a validated Japanese functional food. JOURNAL OF BIOLOGICAL REGULATORS & HOMEOSTATIC AGENTS, 34(1), 111-121 [10.23812/19-315-A].
File in questo prodotto:
File Dimensione Formato  
MITOCHONDRIAL AND REDOX DYSFUNCTION IN POST-MENOPAUSE AS RISK 2020.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 304.67 kB
Formato Adobe PDF
304.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/481530
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact